Roll	I No.	Total No. of Pages : 02
Tota	al No. of Questions : 18	
B.T	ech. (Computer Science Engineering (Ser	/ Information Technology / ECE) n.–4)
	MATHEMATICS –III / ENGINEE Subject Code M.Code	e : BTCS402
Tim	ne : 3 Hrs.	Max. Marks : 60
INST	TRUCTIONS TO CANDIDATES :	
1.	SECTION-A is COMPULSORY consisting each.	g of TEN questions carrying TWO marks
2.	SECTION-B contains FIVE questions ca have to attempt any FOUR questions.	rrying FIVE marks each and students

3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly :

- 1) Define periodic functions.
- 2) State the sufficient condition for the existence of Laplace transforms.
- 3) Define analytic and conjugate functions of a complex variable.
- 4) Define Homgenous finear partial differential equation.
- 5) Define critic oregion of the testing.
- 6) Define Eigen value and eigen vector of a matrix.
- 7) Define Binomial and Poisson distributions.
- 8) Write the Laplace transform of $t^2 \sin 2t$.
- 9) Write the difference between chi-square and *t*-distributions.
- 10) Differentiate between Euler's and modified Euler's method for solving the ordinary differential equation.

SECTION-B

11) Obtain the Fourier series of x sin x as a cosine series in (0, \cancel{x} Hence show that $\frac{1}{1.3} \Box \frac{1}{3.5} \Box \frac{1}{5.7} \Box \ldots \Box \Box \frac{\cancel{x} 2}{4}$.

1 M-56605

(S2)-2693 & 2797

Download all NOTES and PAPERS at StudentSuvidha.com

12) Using the Laplace transform, prove that

$$\int_{0}^{\Box} \frac{e^{\Box at} \Box e^{\Box bt}}{t} dt \Box \log \frac{b}{a}.$$

13) Solve the following equation by Gauss elimination method :

$$2x + y + z = 10$$
; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$

- 14) The theory predicts the proportion of beans, in the four groups A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory ? (The table value of ² for 3 d.f. at 5% level of significance is 7.81).
- 15) Show that $f(z) = xy^2 (x + iy) + (x^2 + y^4)$, $z \stackrel{\text{so}}{\Rightarrow} 0$ and f(z) = 0, z = 0 is not analytic at z = 0, although C-R equations are satisfied at the origin.

SECTION-C

- 16) a) Marks obtained by a number of students are assumed to be normal distributed with mean 50 and variance 36. If 4 students are taken at random, what is the probability that exactly two of them will have marks over 65? Given that $\int_0^2 [z] dz = 0.4772$ where z is N(0, 1).
 - b) The intelligence quotients (IQ) of 16 students from B.Tech. IInd year showed a mean of 107 and a standard deviation of 10, while the IQs of 14 students from B.Tech. Ist year showed a mean of 112 and a standard deviation of 8. Is there a significant difference between the IQs of the two groups at significance levels of 0.05? Given that critical value of 28 degree of freedom with 5% level of significance is 2.05.
- 17) Find the largest eigen value and the corresponding eigen vector of the matrix

2	[]1	0	
1	2	[]1	
0	[]1	2	
	1	1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

18) Solve the following by Euler's modified method :

$$\frac{dy}{dx} []x []y, y(0) []1$$

at x = 0.3 with step size 0.1.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-56605

(S2)-2693 & 2797

Download all NOTES and PAPERS at StudentSuvidha.com